Irrigation Scheduling Using ET and Soil-Based Methods

Loren Oki
CE Specialist, Landscape Horticulture
Departments of Plant Sciences and Environmental Design

Sustainable Turfgrass Design and Management
February 22, 2012
Irrigation Control Systems

- Control
 - Timers

Irrigation is applied based on a fixed, predetermined schedule
Irrigation Control Systems

- Control
 - Timers
 - Sensors

Moisture sensing devices
e.g., Tensiometers

Graphic: L. Oki
Irrigation Control Systems

- Control
 - Timers
 - Sensors

Moisture sensing devices e.g., Tensiometers
Soil Moisture-Based Irrigation

Graphic: L. Oki
Irrigation Control Systems

- Control
 - Timers
 - Sensors

Photo: L. Oki
Irrigation Control Systems

• Control
 – Timers
 – Sensors

Photo: L. Oki
Irrigation Control Systems

- **Control**
 - Timers
 - Sensors

Tensiometers
Granular matrix (gypsum blocks)
Time domain reflectometry (TDR)
Dielectric permittivity

Conductance-based sensors are NOT appropriate

Photo: L. Oki
Irrigation Control Systems

- **Control**
 - Timers
 - Sensors
 - Water use models

- Based on weather data
- Requires previous research
- Crop specific
- Easy to use
Irrigation Control Systems

- **Control**
 - “Hand”
 - Timers
 - Sensors
 - **Water use models**

- Light accumulation
- Evapotranspiration (ET) “weather-based”
Modified Penman-Montieth

Reference ET (ET_0) is calculated based on weather data

$$ET_0 = \frac{\Delta (R_n - G)}{\lambda [\Delta + \gamma (1 + C_d u_2)]} + \frac{37}{\Delta + \gamma (1 + C_d u_2)} \frac{u_2(e_s - e_a)}{T_a + 273.16}$$

ET_0 = grass reference evapotranspiration (mm h$^{-1}$)
Δ = slope of saturation vapor pressure curve (kPa °C$^{-1}$) at mean air temperature (T)
R_n = net radiation (MJ m$^{-2}$ h$^{-1}$)
G = soil heat flux density (MJ m$^{-2}$ h$^{-1}$)
γ = psychrometric constant (kJ m$^{-2}$ h$^{-1}$)
T_a = mean hourly air temperature (°C)
u_2 = wind speed at 2 meters (m s$^{-1}$)
e_s = saturation vapor pressure (kPa) at the mean hourly air temperature (T) in °C
e_a = actual vapor pressure (kPa) at the mean hourly air temperature (T) in °C
λ = latent heat of vaporization in (MJ kg$^{-1}$)
C_d = bulk surface resistance and aerodynamic resistance coefficient
Irrigation Control Systems

- Control
 - Water use models

CIMIS

California Irrigation Management Information System

Water use reports are used with a crop or landscape coefficient to estimate site water use.

http://wwwcimis.water.ca.gov/cimis/
Irrigation Control Systems

• Control
 – Water use models

CIMIS

• Reference ET (ET_0) is reported
Irrigation Control Systems

- **Control**
 - Water use models

CIMIS

- Reference ET (ET_0) is reported
- Crop coefficient (K_c) is necessary
- Determine ET_{crop} (ET_c) to estimate crop water use

 $$ET_c = ET_0 \times K_c$$

- Can this system be utilized in an urban landscape?
- Water budgets are now required in new larger landscapes.
Irrigation Control Systems

- Control
 - Water use models

Weather-based control

- Weather information
 - Weather station
 - Telephone, internet
 - Wireless
- Landscape information
 - Location
 - Area, size
 - Plant composition
 - Soil type, Slope, Aspect, others
Irrigation Control Systems

• Control
 – Water use models

Weather-based control
 • Determine program for driest month
 • Modify for wetter months
 • Duration
 • Frequency
ET₀ Zones Map

Reference EvapoTranspiration (ET₀) Zones

Monthly Average Reference Evapotranspiration by ET₀ Zone (inches/month)
Irrigation Control Systems

• Things to do
 • Group plants of similar water requirements within an irrigation zone (hydrozones)
 • Obtain information on plant water use
 • WUCOLS

www.water.ca.gov/wateruseefficiency/docs/wucols00.pdf
Irrigation Control Systems

• WUCOLS
 • Water Use Classifications of Landscape Species
 • Landscape Coefficient Method

www.water.ca.gov/wateruseefficiency/docs/wucols00.pdf
Irrigation Control Systems

• SLIDE
 • Simplified Landscape Irrigation Demand Estimator

• Start with $K_p = 0.5$
• Further modify based on morphological characteristics
 • Leaf area
 • Leaf size
 • Color
 • Others
Thank you
lroki@ucdavis.edu